On Estimation of snow water equivalence using SIR-C/X-SAR

نویسندگان

  • Jiancheng Shi
  • Jeff Dozier
چکیده

Snow water equivalence, which is the product of snow density and depth, is the most important parameter in snow hydrology. This paper demonstrates the algorithms for estimating dry snow density, depth, grain size, underground dielectric constant and surface RMS height using multi-frequency and –polarization SAR (SIR-C/X-SAR) measurements. The algorithms were developed based on the numerically simulated backscattering coefficients. We used L-band VV and HH to estimate snow density and the under-ground surface parameters: dielectric constant and roughness RMS height. The under-ground surface can be either soil or rock. Then, C-band VV, HH and X-band VV are used to estimate snow depth and grain size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size

The relationship between snow water equivalence (SWE) and SAR backscattering coefficients at Cand X-band (5.5 and 9.6 GHz) can be either positive or negative. Therefore, discovery of the relationship with an empirical approach is unrealistic. Instead, we estimate snow depth and particle size using SIR-C/X-SAR imagery from a physically-based first order backscattering model through analyses of t...

متن کامل

Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties

Algorithms for estimating dry snow density and the dielectric constant and roughness of the underlying soil or rock use backscattering measurements with VV and HH polarization at L-band frequency (1.25 GHz). Comparison with field measurements of snow density during the first SIR-C/X-SAR overpass shows absolute accuracy of 42 kg m 3 (13% relative error). For the underlying soil, comparisons with...

متن کامل

Feasibility of Envisat Data for the Estimation of Snow Pack Characteristics and Areal Fraction of Snow in Boreal Forests

Estimation of snow moisture (total liquid water content) and the fraction of snow covered area (SCA) is investigated by applying multi-year ERS-2 SAR and Envisat ASAR data sets. Additionally, the feasibility of Envisat MERIS for the operative monitoring of SCA in boreal forests is discussed and analysed. An inversion approach for the moisture retrieval from SAR data is introduced. The results c...

متن کامل

Estimation of Snow Water Equivelant Using a Parameterized Snow Scattering Model

Active microwave sensors, especially high-frequency radar systems, are highly sensitive to snow pack parameters, including Snow Water Equivalent (SWE), which is a crucial parameter in the studies of hydrology and climatology. For example, studies using Ku-band observations from scatterometer QuickSCAT and POLSCAT have shown significant radar backscattering responses on SWE variations. It has be...

متن کامل

Sar Backscatter Inversion Model for Estimation of Snow Properties

This paper presents an inverse model for SAR backscatter X band designed to snow and ice surfaces. The model inversion enables estimating the morphological characteristics of snow cover from SAR data. X Cosmo-Skymed sensor data was used in the experiment tested here for the region of Union Glacier Antarctica. We observed a precision in determining the estimated size of snow grains about 94%. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998